THE C*-ALGEBRAS ASSOCIATED TO TIME-t AUTOMORPHISMS OF MAPPING TORI
نویسنده
چکیده
We find the range of a trace on the K0 group of a crossed product by a time-t automorphism of a mapping torus. We also find a formula to compute the Voiculescu-Brown entropy for such an automorphism. By specializing to the commutative setting, we prove that the crossed products by minimal time-t homeomorphisms of suspensions built over strongly orbit equivalent Cantor minimal systems have isomorphic Elliott invariants. As an application of our results we give examples of dynamical systems on (compact metric) connected 1-dimensional spaces which are not flip conjugate (because of different entropy) yet their associated crossed products have isomorphic Elliott invariants.
منابع مشابه
Approximation of a generalized Euler-Lagrange type additive mapping on Lie $C^{ast}$-algebras
Using fixed point method, we prove some new stability results for Lie $(alpha,beta,gamma)$-derivations and Lie $C^{ast}$-algebra homomorphisms on Lie $C^{ast}$-algebras associated with the Euler-Lagrange type additive functional equation begin{align*} sum^{n}_{j=1}f{bigg(-r_{j}x_{j}+sum_{1leq i leq n, ineq j}r_{i}x_{i}bigg)}+2sum^{n}_{i=1}r_{i}f(x_{i})=nf{bigg(sum^{n}_{i=1}r_{i}x_{i}bigg)} end{...
متن کاملA K-Theoritic Approach to Some C*-Algebras
In this paper we look at the K-theory of a specific C*-algebra closely related to the irrational rotation algebra. Also it is shown that any automorphism of a C*-algebra A induces group automorphisms of K_{1}(A) amd K_{0}(A) in an obvious way. An interesting problem for any C*-algebra A is to find out whether, given an automorphism of K_{0}(A) and an automorphism of K_{1}(A), we can lift them t...
متن کاملNonexpansive mappings on complex C*-algebras and their fixed points
A normed space $mathfrak{X}$ is said to have the fixed point property, if for each nonexpansive mapping $T : E longrightarrow E $ on a nonempty bounded closed convex subset $ E $ of $ mathfrak{X} $ has a fixed point. In this paper, we first show that if $ X $ is a locally compact Hausdorff space then the following are equivalent: (i) $X$ is infinite set, (ii) $C_0(X)$ is infinite dimensional, (...
متن کاملFixed point approach to the Hyers-Ulam-Rassias approximation of homomorphisms and derivations on Non-Archimedean random Lie $C^*$-algebras
In this paper, using fixed point method, we prove the generalized Hyers-Ulam stability of random homomorphisms in random $C^*$-algebras and random Lie $C^*$-algebras and of derivations on Non-Archimedean random C$^*$-algebras and Non-Archimedean random Lie C$^*$-algebras for the following $m$-variable additive functional equation: $$sum_{i=1}^m f(x_i)=frac{1}{2m}left[sum_{i=1}^mfle...
متن کاملLie ternary $(sigma,tau,xi)$--derivations on Banach ternary algebras
Let $A$ be a Banach ternary algebra over a scalar field $Bbb R$ or $Bbb C$ and $X$ be a ternary Banach $A$--module. Let $sigma,tau$ and $xi$ be linear mappings on $A$, a linear mapping $D:(A,[~]_A)to (X,[~]_X)$ is called a Lie ternary $(sigma,tau,xi)$--derivation, if $$D([a,b,c])=[[D(a)bc]_X]_{(sigma,tau,xi)}-[[D(c)ba]_X]_{(sigma,tau,xi)}$$ for all $a,b,cin A$, where $[abc]_{(sigma,tau,xi)}=ata...
متن کامل